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SUMMARY. We hierarchically model pneumonia and influenza mortality as a function of

time, capturing the onset, duration, and severity of a flu season. Using historical data, we fit

a model in which weekly mortality has an overdispersed Poisson distribution. This approach

allows us to deal directly with year-to-year variation and to characterize that variation over

longer time periods. Results from this analysis challenge the conventional wisdom regarding

the extent to which influenza epidemics have occurred in the U.S. during the past 40 years.
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1. Introduction

Pneumonia and influenza (P&I) mortality is one measure of the severity of a flu sea-

son. P&I data since 1996 are available in National Notifiable Diseases Surveillance System

(NNDSS) “Provisional Weekly Tables” at the www.cdc.gov/scientific.htm web site. For

many cities, mortality has been monitored since 1962 and has been frequently examined for

many purposes, such as estimating “excess deaths” attributable to influenza.

Our purpose is to model the seasonal nature of P&I mortality in order to understand the

past and to predict the (near term) future. In particular, given information from an ongoing

flu season, we predict deaths for the remainder of the season and assign uncertainties to those

predictions. An accurate forecasting methodology is useful for many purposes, including

response planning for anticipated near term levels of influenza and biosurveillance to detect

potential anomalies.

At the core of good prediction is an explicit accounting for season-specific behavior. To

illustrate, consider Figure 1, which displays weekly P&I mortality from three flu seasons in

Los Angeles (the overlaid curves in Figure 1 are discussed later). Year-to-year variability is

apparent: the peak mortality levels and their corresponding times of occurrence range from

more than 60 deaths near week 30 for the 1968-9 season to roughly 40 deaths near week 38

for 1975-6 to less than 20 deaths with no discernible peak time for 1973-4 (we define week

t = 0 to be the 27th week of the calendar year to center the plots).

The season-to-season variability reflects that some flu strains are more virulent than
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others and that, in a given city, flu may arrive at times that are comparatively early or late

in the season. As a flu season evolves, we estimate season-specific parameters that reflect

a baseline level, peak height, and the time at which the peak occurs. Related parameter

estimates, derived from a model assuming a slowly moving baseline coupled with a Gaussian-

shaped peak and an overdispersed Poisson error term, are then used in prediction.

Beyond the issue of prediction, parameter estimates covering the past 40 years provide in-

sight into long term behavior of influenza-related mortality. That insight leads us to advance

the potentially controversial assertion that the extent to which epidemics have occurred is

greatly exaggerated.

In Section 2, we briefly review previous modeling of P&I mortality data and present the

hierarchical approach. We then apply the hierarchical model to P&I data in Section 3 and

illustrate its predictive capability. A variety of related remarks are given in Section 4.

2. Methods

2.1 Cyclical Regression and Time Series Models

The most well known modeling of P&I data is displayed in Figure 2. Simonsen et.

al. (1997a) nicely summarize the methodology for cyclical regression. Related applications

(Lui and Kendal 1985; Simonsen et. al. 1997b; Simonsen et. al. 2000; Mostashari 2002) have

also appeared.
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The cyclical regression model has the form

Y (t) = a+ bt+ ct2 + d cos
(

2πt

52.167

)

+ f sin
(

2πt

52.167

)

+ et , (1)

where Y (t) is the percentage of deaths attributed to P&I in week t, 52.167 is the average

number of weeks in a year, (a, b, c, d, f) are model parameters, and et is an error term.

Several aspects of cyclical regression warrant attention, as the related issues must be

dealt with in any practical modeling. The first involves normalization: during the 40+ year

monitoring period, the U.S. population has increased by more than 50%. As such, P&I

deaths, when measured in absolute number, increase over time for many metropolitan areas

owing to the size and age of the population at risk. Cyclical regression accounts for this by

normalizing P&I deaths to the total number of deaths.

A second aspect of cyclical regression involves its characterization of baseline behavior.

In the absence of seasonal effects (i.e., set the parameters d and f in (1) equal to zero), the

model postulates that P&I deaths behave according to a slowly moving baseline, described

by a quadratic function a+ bt+ ct2 in time t over the relevant time period.

Thirdly, note in Figure 2 that P&I results are accumulated over all nationwide surveillance

sites. By combining information across many cities, data from those cities where flu arrives

early in a season are effectively offset by results from other cities where it arrives later. We

return to this point in the next section.
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The final aspect of cyclical regression involves the error bands in Figure 2. These error

bands are obtained by fitting the data “after excluding weeks with excess mortality” (Si-

monsen et. al. 1997a, p. 391) and then computing baseline uncertainties from the remaining

data only. At that point, other data are superimposed on the fit and excesses are revealed.

Conventional time series modeling can also be used on P&I data. Good references include

Stroup, Thacker, and Herndon (1988), and Williamson and Hudson (1999), so we do not

detail that work here. Upon coupling ARIMA modeling with statistical process control

techniques for one-step-ahead forecast errors, aberrations are detected in near real time.

The techniques used are similar to those for similar problems in industrial manufacturing

(Montgomery and Mastrangelo 1991) and in nuclear materials safeguards (Picard 1987).

Such detection methods could also be useful for biosurveillance.

2.2 Hierarchical Modeling of Historical Data

As is apparent from Figure 1, applying models such as those in the previous section

to city-specific data is ill-advised. Procedures that force-fit a one-size-fits-all peak height,

peak width, and time of year at which the peak occurs, are poorly suited to cases where

season-to-season variability is important. Our goal is to overcome this model deficiency and

develop a predictive mechanism for P&I mortality.

The model we use combines a slowly moving baseline term together with a Gaussian-

shaped peak to capture seasonal effects. To begin, let E[Ms(t)] denote the expected P&I
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mortality for week t of season s, where

E[Ms(t)] = bs(t) +
cs
σs

φ
(

t−∆s

σs

)

, (2)

bs(t) is the baseline level, cs quantifies the contribution of season s to overall mortality

(as discussed below), and the function φ(·) is the standard normal density. The Gaussian

function φ(·) is indexed by easily interpreted parameters ∆s, denoting the time at which

the peak occurs, and σs, which corresponds to the duration of flu season s. Curves of the

form (2) are overlaid on Figure 1.

The baseline function has the form

bs(t) = bs−1 +
t

52
(bs − bs−1) (3)

for {bs} the mortality levels for week t = 0 of the individual flu seasons. In other words, the

slowly moving baseline is modeled by linearly interpolating between annual off-peak baseline

levels. Were the baseline values {bs} to conform to a quadratic function and were there no

season-to-season differences (set cs, ∆s and σs to the same values for all flu seasons), then

the hierarchical model would be nearly indistinguishable from cyclical regression.

The expected number of P&I deaths for flu season s is obtained by integrating the
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expected mortality E[Ms(t)] over time, getting

∫ 52

t=0
E[Ms(t)] dt = cs + 52 × bs−1 + bs

2
, (4)

which is simply the sum of the seasonal component and a baseline contribution.

To continue the model specification, a stochastic error term is needed. Exploratory

analyses indicated that the data were overdispersed relative to the Poisson distribution.

Overdispersion here may arise from several causes: for example, when there is variation

in host susceptibility, the population propensity to die from P&I over time/space varies

around a population average. Also, the reporting system evolves over time: during the

roughly 40 years of data collection, changes have occurred in reporting practices, in the

people involved with the reporting, in various procedures (e.g., the way that causes of death

are categorized and the proportion of deaths entailing autopsies), and so on.

A common model for such overdispersion is the negative binomial (McCullagh and

Nelder 1989, p. 199). The corresponding density has the form

Prob {Ms(t) = xs(t) |µ = E[Ms(t)]} =
Γ(xs(t) + ψ µ) ψψ µ

xs(t)! Γ(ψ µ) (1 + ψ)xs(t)+ψ µ
. (5)

Here, the parameter ψ > 0 inflates the variance:

Var{Ms(t) |µ = E[Ms(t)]} =
1 + ψ

ψ
µ , (6)
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and the limiting case (ψ →∞) is a Poisson density, having variance µ.

To complete the hierarchical specification, we capture the historical behavior of the

season-to-season parameters using prior distributions. Over the 40-year time period of the

mortality data, the baseline values {bs}, seasonal contributions {cs}, and times {∆s} at

which the peaks occur often behave in a statistically predictable fashion. As we illustrate

using data from Albuquerque, the simplest form of the model postulates parameters that

behave from season to season as

{log bs} ∼ i.i.d. N(µb, σ
2
b ) , (7)

{log cs} ∼ i.i.d. N(µc, σ
2
c ) , (8)

{∆s} ∼ i.i.d. N(µ∆, σ
2
∆) , (9)

{log σs} ∼ i.i.d. N(µσ, σ
2
σ) , and (10)

ψ ∼ Ga(µψ, σ
2
ψ) , (11)

where the gamma distribution for ψ is parameterized by its mean and variance. The model

does not assume a correlation between the peak mortality level and the time in the flu

season at which it occurs. Also, it postulates that, except for an inherited baseline term and

a common overdispersion parameter, there is no time dependency from one flu season to the

next. Finally, the hyperparameters µc, σc, and so forth are also assigned prior distributions,

completing the hierarchical specification.
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Obvious generalizations of the above steady-state hierarchical modeling assumptions can

be pursued when departures from that situation are warranted. A simple example of this

involves metropolitan areas for which the population at risk changes significantly during the

time frame covered by the modeling. Modifications of the i.i.d. nature of the baseline lev-

els {bs}, such as to allow those levels to change commensurate with changes in the population

at risk, could be explicitly accounted for.

The normal density is used in (2) to capture the shape of the annual mortality profile.

Parameters defining the normal have natural interpretations in this context, identifying the

time of peak mortality and the duration of the flu season. Residual analysis for this choice

of shape function is discussed later.

2.3 Estimation

We detail the calculations for obtaining season-specific parameter estimates and for ob-

taining predicted values. Let x be shorthand notation for the set of all observed mortality

values {xs(t)}, where that set includes all 52 weeks t for all seasons s. And let Θ denote the

set of all model parameters for all flu seasons.

Upon multiplying the prior density forΘ implicit in (7)-(11) by the sampling distribution

for {xs(t)} implicit in (5), the posterior density for Θ is proportional to

f( Θ|x ) ∝ p(Θ ) × Prob [Ms(t) = xs(t) ; s = 1, . . . , S, t = 1, . . . , 52 |Θ ]
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= ph(Θh)
S
∏

s=1

{ p(Θs ) × Prob [Ms(t) = xs(t) ; t = 1, . . . , 52 |E[Ms(t)], ψ]}

= ph(Θh) ×
1

σb
√
2π

e(log(b0)−µb)
2/2σ2

b × (µψσ
2
ψ)
µ2
ψ
σ2
ψ ψµ

2

ψ
σ2
ψ
−1 e−µψσ

2

ψ
ψ

Γ(µ2ψ σ
2
ψ )

×
S
∏

s=1

{

1

σc
√
2π

e(log(cs)−µc)
2/2σ2c × 1

σb
√
2π

e(log(bs)−µb)
2/2σ2

b

× 1

σ∆
√
2π

e(∆s−µ∆)
2/2σ2

∆ × 1

σσ
√
2π

e(log(σs)−µσ)
2/2σ2σ

×
52
∏

t=1

Γ(xs(t) + ψE[Ms(t)]) ψ
ψE[Ms(t)]

xs(t)! Γ(ψE[Ms(t)]) (1 + ψ)xs(t)+ψ E[Ms(t)]

}

Here Θh is the vector of hyperparameters defining the distributions in (7)-(11) and ph(Θh)

is the hyperprior, formed by combining normal hyperpriors for the means and gamma hyper-

priors for the standard deviations. Means and variances of those hyperpriors were obtained

from the posterior distribution of city-specific parameters in another hierarchical analysis

of data from several cities. For completeness, we note that E[Ms(t)] is also a function of

unknown parameters Θs as per (2), so that f(Θ |x ) is algebraically messy.

It is impractical to pursue analytical results for messy functions of more than 150 param-

eters, as for Albuquerque’s historical flu seasons. Instead, results are obtained via Markov

chain Monte Carlo, or “MCMC” (e.g., Besag, et. al. 1995). We used a general-purpose

system (Graves 2001) which emphasizes Metropolis and Metropolis-Hastings moves to in-

dividual parameters, and also makes it easy to improve MCMC convergence properties by

proposing Metropolis moves to multiple correlated parameters simultaneously. Many such
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moves were required in this analysis, owing to high correlations between related parameters

at different levels in the hierarchical model.

2.4 Prediction Methodology

We focus on two prediction problems:

1) given P&I data from an ongoing flu season, predict the next week’s mortality and

assign an uncertainty to that prediction, and

2) given P&I data from an ongoing flu season, predict the total mortality for the entire

season and again assign an uncertainty.

To construct predictions for future weeks using data from an ongoing flu season, let xs(t)

denote the mortality values observed up to and including week t of season s. Suppose that

mortality data xs(t) have been observed and it is of interest to predict the mortalityMs(t+1)

for week t + 1 of season s. There are several ways to carry out the MCMC, the simplest of

which involves simulating a sample from the predictive distribution.

To that end, each member from the MCMC sample for the posterior g[Θs |xs(t)] is

used to compute E[Ms(t + 1) |Θs]. For the nth such value, Θ
(n)
s , we simulate γ

(n) from a

gamma distribution having mean E[Ms(t+1) |Θ(n)s ] and index ψE[Ms(t+1) |Θ(n)s ], and then

generate Ms(t+ 1)
(n) as a Poisson random variable with mean γ(n). The set {Ms(t+ 1)

(n)}

so obtained is an MCMC sample from the predictive distribution. The predictive mean
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is estimated by the average of the {E[Ms(t + 1) |Θ(n)s ]}. Posterior predictive intervals are

obtained from the quantiles of the simulated predictive distribution.

Should the current week of the flu season be week t = 51, then the above predictive

distribution summarizes the remainder of the season’s mortality. Otherwise, prediction of

the residual mortality for the remaining 52− t weeks of the season amounts to obtaining the

predictive distribution of the {Ms(t + j), j = 1, . . . , (52 − t)} yet to be observed. This is

done by taking each member of the MCMC sample for the posterior and generating a set of

independent {γj} from gamma distributions with respective means {E[Ms(t+ j) |Θs]} and

respective indices {ψE[Ms(t+j) |Θs}. Then the {Ms(t+j), j = 1, . . . , 52−t} are simulated

as independent Poisson random variables with means {γj}. The residual mortality, equal to

the sum of the {Ms(t+ j)}, is then computed. Accumulating such sums for each member of

the MCMC sample yields the predictive distribution of the residual mortality.

3. Results

3.1 Application to Historical Albuquerque Data

We illustrate application of the model to metropolitan Albuquerque, a medium-sized area

of interest to us because of its local proximity. Estimates and standard deviations of the

hyperparameters in (7)-(11) specific to Albuquerque are

(µb, σb) = (1.1, 0.3) , (µc, σc) = (3.8, 0.4) ,
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(µ∆, σ∆) = (32.3, 3.8) , (µσ, σσ) = (1.8, 0.5) , and

(µψ, σψ) = (2.3, 0.2) . (12)

The hyperparameter µ∆ ≈ 32.3 indicates that, historically, the peak mortality occurs on

average in early February. And the overdispersion as per (6) inflates variability by a factor

of roughly (1 + ψ)/ψ ≈ 1.4 relative to that from a simple Poisson model. We use these

hyperparameter estimates for prediction in Section 3.2.

Time sequence plots of estimated season-to-season parameters are given Figure 3 and

indicate no discernible long term time trend in mortality. A common speculation is that the

seasonal contributions {cs} should evolve slowly over time, reflecting natural evolution in

the prevailing influenza strains. A diagnostic check of autocorrelations, however, provides no

reason to reject the model’s assumed season-to-season independence of those terms. Figure 4

displays normal quantile-quantile plots of the estimates and shows that the postulated normal

distributions in (7)-(9) reasonably describe empirical behavior. Also, the plot of the {log cs}

against the {∆s} indicates no apparent relation between the overall severity of a flu season

and the time of year at which the peak mortality occurs (Figure 5).

Residual analysis reveals minor imperfections in the model. As might be gleaned from

Figure 1, pre-peak mortality rises slightly more quickly than the post-peak mortality declines,

meaning that symmetric shapes such as the normal density in (2) and the sine and cosine

harmonics in (1) do not fully capture the seasonal P&I cycle. But despite these minor
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imperfections, we conclude from the usual model diagnostics that the steady-state model

of the previous section, although purely empirical, provides a good fit to the 1962-1999

Albuquerque P&I mortality data and is useful for prediction.

Similar goodness of fit checks reveal that the steady-state model requires modification

for certain other cities and time frames (see Section 4.2).

3.2 Prediction for Albuquerque

To illustrate prediction, we mimic the use of the model in a real-time environment using

data from Albuquerque. Using the 36 flu seasons from mid-1962 through mid-1998 to define

the initial observed data xs(t), we predict the mortality Ms+1(1) for the first week of flu

season s+ 1 (1998-9) as well as the total mortality for that season.

Next, the clock is advanced one week, so that the observed data now include results from

the first week of season s + 1. Mortality for the second week is predicted, as well as the

residual mortality for the season. The clock is then advanced another week, and so on.

Figure 6 summarizes the results. The one-step-ahead forecasts are plotted in the up-

per graph along with their corresponding 95% uncertainty intervals. The lower graph is

analogous to the upper graph, dealing with the season’s residual mortality instead of the

one-step-ahead forecasts. In both cases, widths of the uncertainty intervals are commensu-

rate with the size of the quantity being predicted.

Overlaid on Figure 6 are the actual results. Note that the coverage probabilities of
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one-step ahead forecasts for discrete distributions tend to slightly exceed the nominal ones

(the interval endpoints being integer valued means that the corresponding probabilities will

slightly exceed 95%) and that there are correlations among forecast errors of residual mor-

talities in the same season. As such, the coverages in Figure 6 are in accordance with

expectations, which is another goodness of fit check of the model.

The hierarchical approach could be applied to other metrics sensitive to the severity of a

flu season, such as age-specific P&I mortality (Stroup et. al. 1988), the number of positive

influenza isolates in laboratory samples (Mostashari 2002), and the proportion of patient

visits to sentinel physicians for influenza-like illness, which state health departments such

as New Mexico’s monitor as one means of tracking an ongoing flu season. Such open-ended

efforts remain as future research.

4. Discussion

4.1 Do Flu Epidemics Truly Exist?

Some flu seasons are unquestionably worse than others. But at this point we digress to

consider whether epidemics have occurred during the past 40 years.

To that end, the immediate semantic question is: exactly what constitutes an “epidemic?”

For the moment, consider a working definition analogous to that for an outlier. In other

words, if one or more data points appear to arise from a different statistical population from

that for the remainder of the data, then the data point(s) in question are deemed outliers.
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It follows from this definition, for example, that simply being the most extreme value among

a smooth continuum of values is not sufficient to be regarded as an outlier.

Using this definition, there appear to be no epidemic flu seasons for the P&I data we

examined. In Figure 4, the normal quantile-quantile plot of estimated log seasonal contri-

butions to mortality for Albuquerque does not appear to contain outliers. Quantile-quantile

plots for the {log cs} of the six other cities we examined are similarly well behaved.

As such, we conclude that data from flu seasons with comparatively high P&I mortality

do not reflect anomalous activity, but instead conform to the upper tail of a predictable

statistical population. For the record, we note that the P&I data go back only to 1962, thus

excluding flu seasons such as the famous 1918 pandemic. Nor did we examine results from all

122 cities in the surveillance network, just seven. Nor did we assess influenza-related metrics

other than mortality. Nonetheless, this single-population description for the ensemble of

seasonal mortalities contrasts sharply with the two-population (epidemic and non-epidemic)

description of flu seasons often given in the literature, where epidemics are portrayed as

commonly occurring, such as in Figure 2.

4.2 Data Quality

Analyses are necessarily limited by their reliance on reported data. As has been noted,

there are “special features of public heath surveillance data . . . including that the data are not

usually generated from a random sample,” which present “an analytic challenge” (Williamson
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and Hudson 1999, p. 3284). One such challenge involves ensuring that mortality data are

truly comparable over time.

Our example data set (Albuquerque) illustrates the issue. The 1999-2000, 2000-2001,

and 2001-2002 flu seasons involved more than 400 P&I deaths each, compared with a sea-

sonal maximum of 337 deaths during 1962-1999. Considering that those flu seasons did not

produce unusual P&I mortality nationally, the sudden Albuquerque increase is suspicious.

In actuality, an influx of biosurveillance funding together with an October 1999 revision to

the way death certificate information was used to categorize P&I deaths led to changes in

the monitoring system that complicate analysis of the most recent data.

More generally, hierarchical modeling must be done with care. For example, baseline

parameter estimates for Des Moines abruptly change around 1982, while those for Charlotte

consistently increase over time; see the goodness of fit checks in Figure 7. Obvious modifi-

cations to the model should be considered when steady-state assumptions are unrealistic.

4.3 Discussion

Hierarchical modeling is useful for many purposes, the most obvious ones being discussed

in Section 3. Historical P&I behavior can sometimes be nicely summarized, such as by the

steady-state parameters in (12) for Albuquerque.

But there are other uses of hierarchical modeling, such as the prompt identification of

anomalous events. In Figure 6, for example, the uncertainty bands quantify the anticipated
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range of mortality under normal conditions. As such, those uncertainty bands provide a

signal-to-noise context for understanding what magnitudes of anomalous events would be

detectable under what conditions (note that the noise level varies depending on the particular

flu season involved and on the time of year). Granted, other health metrics are better suited

for early warning purposes than are mortality data, but real-time monitoring procedures

based on the equivalent of Figure 6 are useful for biosurveillance.

Still another use of hierarchical modeling involves the identification of phenomena war-

ranting further investigation. For example, peak P&I mortality in New York occurs three

and a half weeks earlier than in Los Angeles, on the average (see Figure 8). In turn, Los An-

geles flu seasons are consistently shorter than those in Pittsburgh, as quantified by estimates

of the parameter σ in the hierarchical model (2). We resist speculation regarding cause-and-

effect explanations for such phenomena, but suspect that additional research could lead to

a better understanding of P&I mortality than currently exists.
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Three Los Angeles Flu Seasons
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Figure 1: Weekly P&I Mortality in Los Angeles for three flu seasons: 1968-9 (denoted by a
‘+’ symbol), 1973-4 (denoted by an open circle) and 1975-6 (denoted by a solid diamond).
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Figure 2: Cyclical Regression Model for P&I Data, Reproduced From the CDC Web Site.
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Yearly Albuquerque baselines
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Figure 3: Time Sequence Plots of Estimated Baselines {bs}, Seasonal Contributions {cs},
and Times {∆s} of Peak Activity.
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Normal quantile-quantile plot of log baselines
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Figure 4: Normal Q-Q Plots for Estimated Baselines, Seasonal Contributions, and Times of
Peak Activity
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Scatterplot of log seasonal contibutions and peak weeks
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Figure 5: No Apparent Relation Between the Severity of a Flu Season and the Time of Peak
Activity.
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One-week-ahead forecasts and 95% prediction intervals
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Figure 6: Predictive Ability for the Albuquerque 1998-9 Flu Season.
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Des Moines baseline P&I mortality
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Charlotte baseline P&I mortality
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Figure 7: Baseline Behavior Not Conforming to the Steady-State Model
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Peak Times in Two Cities

New York Peak Times

Lo
s 

A
ng

el
es

 P
ea

k 
T

im
es

20 25 30 35 40

20
25

30
35

40

Season Lengths in Two Cities

Los Angeles sigma

P
itt

sb
ur

gh
 s

ig
m

a

0 5 10 15

0
5

10
15

Figure 8: Estimated Times of Peak Mortality and Durations of Flu Seasons (were the cities
identical for each season, all points would fall on the diagonal lines).
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